A point source emits sound equally in all directions in a non-absorbing medium. Two points $P$ and $Q$ are at a distance of $9$ meters and $25$ meters respectively from the source. The ratio of the amplitudes of the waves at $P$ and $Q$ is
$5:3$
$3:5$
$25:9$
$625:81$
In the standing wave shown, particles at the positions $A$ and $B$ have a phase difference of
A small source of sound moves on a circle as shown in the figure and an observer is standing on $O.$ Let $n_1,\, n_2$ and $n_3$ be the frequencies heard when the source is at $A, B$ and $C$ respectively. Then
A string of mass $2.5\ kg$ is under a tension of $200\ N$ . The length of the stretched string is $20.0\ m$ . If the transverse jerk is struck at one end of the string, the disturbance will reach the other end in .... $\sec$
The stationary wave $y = 2a{\mkern 1mu} \,\,sin\,\,{\mkern 1mu} kx{\mkern 1mu} \,\,cos{\mkern 1mu} \,\omega t$ in a stretched string is the result of superposition of $y_1 = a\,sin\,(kx -\omega t)$ and
A string of mass $2.5\, kg$ under some tension. The length of the stretched string is $20\, m$. If the transverse jerk produced at one end of the string takes $0.5\, s$ to reach the other end, tension in the string is .... $N$